

"Armaments for the Army Transformation"

NDIA Conference & Exhibition Parsippany Hilton, Parsippany NJ

Advanced Penetrator Materials

Dr. Lee Magness*

Lethal Mechanisms Branch Weapons Materials Division

Phone: 410-278-6022

E-mail: magness@arl.army.mil

20 June 2001

OUTLINE

- Background: Relationships between Properties and Performance of High-Density Materials
 - the adiabatic shear failure of DU
 - general approaches to alloy development
- Uranium (U-V-X) Alloys
- Alternative Matrix (adiabatic shearing) Tungsten Composites
- Amorphous and Nanocrystalline Alloys
- Severe Deformation Processed WHAs
- Jacketed Penetrators
- Conclusions

Properties vs. Performance Relationships/Requirements

- Engineering properties: strength and toughness.
 - Allow more efficient sabots/projectiles.
 - Resist complex armors.
 - Soft-launched projectiles expand options.
- •High-rate, high pressure, deformation.
 - Controls efficiency during deep penetration.

At the present time, Depleted Uranium alloys provide the best overall combination of structural and high-rate properties.

Pressure & Strain Rate Distributions During Deep Penetration

Strain-hardening and thermal-softening mechanisms compete during the high rate (adiabatic) deformation.

Flow/Failure of High-Density Penetrator Materials

DU failure by adiabatic shear. This reduces the size of penetrator head, burrows narrower & deeper cavity.

Flow and Failure of High Density Penetrator Materials

TUNGSTEN HEAVY ALLOY

- WIDER CHANNEL
- MUSHROOM NOSE
- LESS DEPTH

W-Ni-Fe

U-3/4 Ti ALLOY

- REMAINS SHARP
- NARROW CHANNEL
- DEEPER CAVITY

U-8Mo ALLOY

Dynamic (SHB) CompressionTests

U-3/4Ti specimen cleaved by shear band

Dynamic compression experiments provide a means for assessing material failure behavior at high loading rates.

Comparison of RHA Steel Perforation Capabilities

¹/₄-scale tests, 65g L/D=15 rods vs. 76.2mm RHA

Deep Penetration performance is a function of alloy density & strain to shear failure.

- **DU alloys**: Enhance susceptibility to shear failure, while retaining/improving engineering properties.
- Non-DU materials: change flow/failure behavior
 - Use alternative matrices, selection based on mechanical and thermal properties that promote high-rate (adiabatic) plastic instability and localization
 - Matrix alloys w/high strength, low work hardening, low strain rate sensitivity, rapid thermal softening
 - Amorphous & nanocrystalline materials as a candidate matrix alloy or entire composite (nano W phase)
 - exhibit localized shear failure in dynamic and quasi-static tests
 - Anisotropic flow/failure of W crystals
- Jacketed Penetrators: Systems approach, with materials issues

SBIR/STTR Center of **ARO** DARPA Other Congressional University Excellence Contracts Interest Government Agencies Programs Program **Programs** TPA International Customer

A International Industry Custome Agreements

Uranium-Vanadium Alloys

Composition	Density	Hardness	Ult. Tensile Strength
	(g/cc)	HRC	(Ksi/Mpa)
U-V (1-4.5%)	16.7–18.5	36-54	To 310/2140
U-V-X(ternary)	16-18.5	36-55	To 320/2200
U-3/4Ti	18.6	38-49	To 250/1720

U-2.1%V, banded martensite (from Staker)

U-.75%Ti, acicular martensite (from Staker)

• U-V alloys have the potential to maintain penetration capability while reducing penetrator density and mass.

Tungsten Composites with Adiabatic Shearing Matrix Alloys

Residual Ti6Al4V Penetrator

Residual W-Ti alloy Composite Penetrator

• Replace conventional Ni-Fe matrix alloy with one more prone to adiabatic shear failure, to enhance plastic instability.

Dynamic Compression Tests of Hafnium and Hafnium Alloy

Unalloyed Hf

HB6, Hf10Ti10Ta

• Hafnium alloy HB6 demonstrated the preferred failure behavior in dynamic compression tests.

Perforation of Steel

Performance of W composite with hafnium alloy matrix significantly better than conventional (Ni-Fe)-matrix WHAs, but still short of DU.

W Composites with Bulk Amorphous Metal (BAM) Matrices

•Amorphous alloys lack longrange structure of crystalline

solids.

Crystalline

Amorphous

- •Unique mechanical properties: high elastic limit (2-3% strain, 1.6GPa Y.S., no work-hardening).
- •Recent development of complex, multi-component bulk metallic glass alloys make 1 to 5 cm thick sections possible (low quench rates)

Typical Mechanical Behavior: no strain hardening in quasi-static **s-e** curve, serrated plastic flow (shear banding)

Angled (~ 45°) shear band failure

"Deformation Mechanisms of the ZrTiNiCuBe Metallic Glass", Wright, Saha, & Nix

W Composites with Bulk Amorphous Metal (BAM) Matrices

•ARO-funded CalTech development of W-composite using Z-Ti-Cu-Ni-Be bulk castable amorphous alloy

Tungsten wire/ amorphous alloy composite.

80% wire reinforced.

Sub-scale ballistic tests suggest DU-like improvement in penetration performance. From ARO grant to CalTech (W. Johnson)

Nanocrystalline Materials

- Like amorphous metals, nanocrystalline (<100 nm GS) metals exhibit little or no work-hardening or bulk plasticity in quasi-static tests
- Shear banding behavior has been observed in materials with GS >250 nm

Tests by Dexin Jia, of Johns Hopkins U., aver.GS 268 nm

Ballistic Tests of Nanocrystalline W-Composite

Penetrator Type	Material	Density	Limit Velocity
		(kg/m^3)	(m/s)
Depleted Uranium	U-3/4 Ti, Rc 40	18600	1260
Conventional WHA	90W-9Ni-1Co	17100	1390
Nano W-Composite	W-Cu-Ni-Al	15200	1347
W-Composite w/Hf matrix	80W-20 HB3	17000	1350

- •Performance of nanocomposite surpassed that of conventional WHA or best adiabatic-shearing matrix, despite lower density
- •DU vs. WHA performances narrowed, but DU is still superior

Nano W-Composite Penetrator Erosion Products Lining Penetrator Tunnel (15X)

SEVERE PLASTIC DEFORMATION PROCESSING

Equi-Channel Angular Pressing (ECAP)

- New Mechanical Working Technique
- Developed in FSU
- •Path to improved mechanical properties or alternative path to grain size refinement (nano)

Key Features

- Cross section in <u>equals</u> cross section out.
- Pure shear deformation
- Imparts cold work (>99%) with or w/o microstructural changes (reversible).
- •Multiple passes increase deformation, refine grain size

5056 Aluminum Alloy ECAE, >2x strength

#0f Passes	Equiv. Reduction
1	69%
2	90
4	99
8	99.99

TEM STRUCTURE AND MICRODIFFRACTION PATTERN 8 PASSES, ROUTE C

Die Angle of 110° Route C, 4 Passes

- Ultra Fine Grained (UFG) Structure
- Mean Grain Size Approximately 1 μm, many grains 0.3 to 0.5 μm

Material Bonding for Jacketed Penetrator

Jacket Material
Selection and Bond
Strength will be Key to
success

Candidate bonding techniques guided by ballistic experiments and simulations; FOCUS – High Strength Bonds

Thermal Spray

Explosive Cladding

- ✓ Metallography
- ✓ Centerline Properties
- ✓ High Strength Bond

- High Strength Bond Achieved!
 - Subscale Experiments Pending
 - Reactive & Passive Targets
- > Follow-on contract in place.
 - Full Scale Processing
- ➤ Iterate based on Ballistic Results.
- Future Consider alternate bonding.
 - Swaging
 - > Co-extrusion
 - Cold Spray

Conclusions/Summary

- Certain minimum mechanical properties required for launch, for performance vs. complex armors
- Efficient flow & failure behaviors improve penetration performance against thick monolithic armor <u>and</u> individual armor components (e.g. basal armor behind ERA applique)
- Alloy development efforts must meet both goals